Decomposition of $C\sp{\infty }$ intertwining operators for Lie groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Equations Satisfied by Intertwining Operators of Reductive Groups

This paper generalizes a recent work of Vogan and Wallach [VW] in which they derived a difference equation satisfied by intertwining operators of reductive groups. We show that, associated with each irreducible finitedimensional representation, there is a functional equation relating intertwining operators. In this way, we obtain natural relations between intertwining operators for different se...

متن کامل

Dirac Operators for Coadjoint Orbits of Compact Lie Groups

The coadjoint orbits of compact Lie groups carry many Kähler structures, which include a Riemannian metric and a complex structure. We provide a fairly explicit formula for the Levi–Civita connection of the Riemannian metric, and we use the complex structure to give a fairly explicit construction of the Dirac operator for the Riemannian metric, in a way that avoids use of the spin groups. Subst...

متن کامل

Operators on Diierential Forms for Lie Transformation Groups

For any Lie group action S: GP ! P , we introduce C 1 (P)

متن کامل

-bounds for Pseudo-differential Operators on Compact Lie Groups

Given a compact Lie group G, in this paper we establish L p-bounds for pseudo-differential operators in L p(G). The criteria here are given in terms of the concept of matrix symbols defined on the noncommutative analogue of the phase space G× Ĝ, where Ĝ is the unitary dual of G. We obtain two different types of L p bounds: first for finite regularity symbols and second for smooth symbols. The c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1976

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1976-0404531-6